
AutoMix
Release 2.1

Feb 09, 2020

Contents

1 Tutorial 1
1.1 Example . 1
1.2 AutoMix Sampler . 3
1.3 Run Statistics . 4

2 Compilation 7
2.1 Library Compilation . 7
2.2 Compiling your program against libautomix . 7
2.3 Compiling test and tutorial . 8
2.4 Compiling “user*” legacy programs . 8
2.5 Clean . 8

3 Public API 9
3.1 Functions: . 9
3.2 C struct’s . 10
3.3 Typedef’s and Enum’s . 12

4 License 15

5 What is Reversible Jump MCMC? 17

6 Main advantages of AutoMix: 19

7 Where to go from here? 21

Index 23

i

ii

CHAPTER 1

Tutorial

1.1 Example

Suppose we have 10 samples from a random process X that we know not much about.

𝑋 = {0.2, 0.13, 0.35, 0.17, 0.89, 0.33, 0.78, 0.23, 0.54, 0.16}

We will assume the samples are independent, identically distributed (IID) from some unknown probability density
distribution (PDF). The nature of the problem indicates that it could come from a Normal distribution, a Gamma
distribution or perhaps a Beta distribution. We don’t have any other information on the parameters,

So we propose three models to account for what we know:

• Model 1: Normal distribution with arbitrary parameters.

𝑝1(𝑥) =
1√

2𝜋𝜎2
exp

(︂
− (𝑥− 𝑥0)2

2𝜎2

)︂
This model has undertermined parameters 𝜎 and 𝑥0.

• Model 2: Beta distribution

𝑝2(𝑥) =
1

𝐵(𝛼, 𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1

This model has undetermined parameters 𝛼 and 𝛽 under the restriction 𝛼 > 0 and 𝛽 > 0.

• Model 3: Gamma distribution

𝑝3(𝑥) =
𝛽𝛼𝑥𝛼−1𝑒−𝛽𝑥

Γ(𝛼)

This model has undetermined parameters 𝛼 and 𝛽 under the restriction 𝛼 > 0 and 𝛽 > 0.

Note: The dimensions for the problems are 2 for all 3 models.

1

AutoMix, Release 2.1

We would like to find the probability of each model given the evidence (called posterior in a Bayesian analysis.)

Assuming independent, identically distributed (IID) samples, the probability of the evidence given the model (or
likelikhood) can be easily calculated

𝑝(𝑋|𝑀) =
∏︁
𝑖

𝑝𝑀 (𝑥𝑖)

The probability of the model given the evidence is then

𝑝(𝑀 |𝑋) ∝
∏︁
𝑖

𝑝𝑀 (𝑥𝑖)𝑝(𝑀)

In what follows we will assume all models are equally likely and set 𝑝(𝑀) = 1/3∀𝑀 .

The AutoMix sampler needs to be provided with a function that returns the target distribution (the posterior in our
example), for each model. The function prototype must be in the form:

double targetDistribution(int model, int model_dim, double *params);

The log-posteriors need to be implemented up to an additive constant. A quick implementation of the log-PDFs could
be:

#include "float.h"
#include <math.h>

int nsamples = 10;
double data_samples[] = {0.2, 0.13, 0.35, 0.17, 0.89,

0.33, 0.78, 0.23, 0.54, 0.16};

double logp_normal(double sigma, double x0) {
double prod = 0;
for (int i = 0; i < nsamples; i++) {
double x = data_samples[i];
prod += -(x - x0) * (x - x0);

}
prod = -nsamples * log(sigma) + prod / (2.0 * sigma * sigma);
return prod;

}

double logp_beta(double alpha, double beta) {
if (alpha <= 0.0 || beta <= 0.0) {
return -DBL_MAX;

}
double prod = 0.0;
for (int i = 0; i < nsamples; i++) {
double x = data_samples[i];
prod += (alpha - 1.0) * log(x) + (beta - 1.0) * log(1.0 - x);

}
prod +=

nsamples * (loggamma(alpha + beta) - loggamma(alpha) - loggamma(beta));
return prod;

}

double logp_gamma(double alpha, double beta) {

(continues on next page)

2 Chapter 1. Tutorial

AutoMix, Release 2.1

(continued from previous page)

double prod = 0.0;
for (int i = 0; i < nsamples; ++i) {
double x = data_samples[i];
prod += (alpha - 1.0) * log(x) - beta * x;

}
prod += nsamples * (alpha * log(beta) - loggamma(alpha));
return prod;

}

Now that we have defined our problem and log-posteriors, we can set up AutoMix to generate samples from the
posteriors of each model.

1.2 AutoMix Sampler

Below is an exanple of a minimal call to generate 1,000 samples from a given problem:

#include "automix.h"

int main() {
int nmodels = 3;
int model_dims[] = {2, 2, 2};
double initRWM[] = {0.5, 0.5, 2.0, 2.0, 9.0, 2.0};
amSampler am;
initAMSampler(&am, nmodels, model_dims, logposterior, initRWM);
burn_samples(&am, 10000);
int nsweeps = 100000;
rjmcmc_samples(&am, nsweeps);
freeAMSampler(&am);
return 0;

}

This is a simple set-up for an AutoMix program. Let’s analyze it by parts.

The first line includes the AutoMix header file, where the amSampler structure and automix functions are defined:

#include "automix.h"

To initiate the amSampler struct, we need to set 4 things:

• The number of models we will use (3 in our example):

int nmodels = 3;

• The dimensions of each model:

int model_dims[] = {2, 2, 2};

• A function that returns the logarithm of the probability density function (PDF), (or the log-posterior distribution
in the context of a Bayesian analysis) for each of the models in our problem. It must have the prototype:

double logposterior(int model, double *params);

And an implementation:

1.2. AutoMix Sampler 3

https://en.wikipedia.org/wiki/Probability_density_function

AutoMix, Release 2.1

double logposterior(int model, double *params) {
if (model == 1) {

return logp_normal(params[0], params[1]);
} else if (model == 2) {

return logp_beta(params[0], params[1]);
} else if (model == 3) {

return logp_gamma(params[0], params[1]);
}
return 0.0;

}

• The initial value of the parameters for every model. This should be given as a 1d continuous array with an
appropriate initial value for each model. For example the Beta distribution is bounded to [0, 1] and any initial
value has to be in that interval as well. This is to avoid starting the chain in a forbidden region of the parameter
space or very far from the average values of the parameters:

double initRWM[] = {0.5, 0.5, 2.0, 2.0, 9.0, 2.0};

In our case we start our chain with values 𝜎 = 0.5, 𝑥0 = 0.5 for the Gaussian model; 𝛼 = 2.0, 𝛽 = 2.0 for the Beta
model; and 𝛼 = 9.0, 𝛽 = 2.0 for the Gamma model.

Once all of the above is defined for our problem we can init our amSampler:

amSampler am;
initAMSampler(&am, nmodels, model_dims, logposterior, initRWM);

It is recommended to “burn” some initial samples to let the MCMC chain achieve convergence. We do this with the
following line:

burn_samples(&am, 10000);

Finally we can create however many RJMCMC samples as we want:

int nsweeps = 100000;
rjmcmc_samples(&am, nsweeps);

1.3 Run Statistics

Our previous main program has one fundamental problem: the lack of output.

AutoMix saves the run statistics in different C data structures.

The most important is the struct runStats. In amSampler is the member st. There, we will find several statistics,
including the parameters sampled during the RJMCMC run. The two most important ones are st.k_summary and
st.theta_summary. For a full description of all the parameters, see Public API.

Just as an example, let’s print out the relative probability of each model:

#include <stdio.h>

int main() {
...
rjmcmc_samples(&am, nsweeps);

printf("p(M=1|E) = %lf\n", (double)am.st.ksummary[0] / nsweeps);

(continues on next page)

4 Chapter 1. Tutorial

AutoMix, Release 2.1

(continued from previous page)

printf("p(M=2|E) = %lf\n", (double)am.st.ksummary[1] / nsweeps);
printf("p(M=3|E) = %lf\n", (double)am.st.ksummary[2] / nsweeps);

freeAMSampler(&am);
return 0;

}

This should print something like the following on screen:

p(M=1|E) = 0.792750
p(M=2|E) = 0.023890
p(M=3|E) = 0.183360

1.3. Run Statistics 5

AutoMix, Release 2.1

6 Chapter 1. Tutorial

CHAPTER 2

Compilation

2.1 Library Compilation

To compile the automix library, simply type make on the command line:

$ make

This default command compiles only the library with optimization flags -O3 on.

If you need to link your program against a library with debug information, type:

$ make DEBUG=1

instead.

If the compilation went without problems, you should see the libautomix.so file created.

Typically, libraries are installed in the /usr/local/lib directory, and include files such as automix.h are
installed in /usr/local/include. If the default install location is enough for your needs, type:

$ sudo make install

sudo privilege may be needed to copy files into the /usr/local directory.

If you prefer to install in a different location you can provide it with the PREFIX command line flag:

$ make install PREFIX=/my/preferred/path/

2.2 Compiling your program against libautomix

If your program is contained in a single main.c file, and assuming no extra libraries or include files are required:

7

AutoMix, Release 2.1

$ cc main.c -lautomix -o myprogram

should be enough to compile. If /usr/local/ is not a default search place for your libraries, add a -L/usr/
local/lib and a -I/usr/local/include to the compilation line:

$ cc main.c -L/usr/local/lib -I/usr/local/include -lautomix -o myprogram

You should have a myprogram executable compiled.

2.3 Compiling test and tutorial

Along with the library you can compile and run the tests:

$ make test
$./test

Or the tutorial provided in this documentation:

$ make tutorial
$./tutorial

2.4 Compiling “user*” legacy programs

Warning: The user examples are deprecated on version 2.x. If you want to compile AutoMix using the old
interface with user* files, please refer to version 1.x of this package.

The original AutoMix was program-oriented and offered several example programs. To compile the example programs
type:

$ make examples

After compilation you should see the programs amtoy1, amtoy2, amcpt, amcptrs, amddi, and amrb9.

You can compile each one of them individually as well, for example:

$ make amtoy1
$./amtoy1

2.5 Clean

To remove the executables and object (.o) files, type:

make clean

8 Chapter 2. Compilation

CHAPTER 3

Public API

3.1 Functions:

All public functions require as a first argument a pointer to amSampler structure.

int initAMSampler(amSampler *am, int nmodels, int *model_dims,
targetDist logpost, double *initRWM);

To initialize amSampler you need to provide:

• the number of models in nmodels;

• the dimensions for each model in model_dims;

• the logarithm of the target distribution (or posterior distribution in a Bayesian analysis) in logpost (see
targetDist);

• and an array with initial conditions for each model in initRWM.

initRWM is a flattened array, with the initial values in contiguous order for each model. If initRWM is passed
as NULL, then the initial values are randomly selected from a uniform distribution in [0, 1).

initAMSampler allocates necessary memory for most array in the rest of the structures.

void freeAMSampler(amSampler *am);
Once you finish working with amSampler, you should free the memory with a call to freeAMSampler().

void estimate_conditional_probs(amSampler *am, int nsweeps);
Estimate the conditional probabilities of the models, to adjust for an appropriate proposal distribution. If
it is not explicitely called by the user, it will be implicitely called by either burn_samples() or
rjmcmc_samples() prior to drawing samples. If the call is implicit, the number of sweeps nsweeps
defaults to 100,000.

In all cases, the statistics collected during the estimate_conditional_probs() calls, are stored in the
cpstats member inside the amSampler struct. For a full description of cpstats, see condProbStats.

void burn_samples(amSampler *am, int nsweeps);
It is advised to burn some samples at the begining of a RJMCMC run to let the Markov chain converge.

9

AutoMix, Release 2.1

void rjmcmc_samples(amSampler *am, int nsweeps);
This is the function that will provide the RJMCMC samples.

The statistics collected during the rjmcmc_samples() calls, are stored in the st member inside the
amSampler struct. For a full description of st, see runStats.

3.2 C struct’s

runStats
Contains statistics of the rjmcmc_samples call.

naccrwmb
[unsigned long] Number of accepted Block-RWM.

ntryrwmb
[unsigned long] Number of tried Block-RWM.

naccrwms
[unsigned long] Number of accepted Single-RWM.

ntryrwms
[unsigned long] Number of tried Single-RWM.

nacctd
[unsigned long] Number of accepted Auto RJ.

ntrytd
[unsigned long] Number of tried Auto RJ.

theta_summary
[double ***] The theta parameter for each model, for each sweep. theta_summary[i][j][k] is the 𝜃𝑘 com-
ponent for the j-th sweep for the i-th model.

theta_summary_len
[int *] the number of sweeps for theta_summary in model k. theta_summary_len[1] = 20 means that the
model 1 has 20 𝜃 samples.

ksummary
[int *] the number of times the model was visited.

amSampler

ch
A chainState instance containing the chain state of the RJMCMC.

jd
A proposalDist instance containing the proposal distribution for the chain.

cpstats
A condProbStats instance that holds statistics for the estimation of conditional probabilities (if ran).

st
A runStats instance that holds statistics for the RJMCMC runs (if ran).

doAdapt
A bool value indicating if Adaptation is to be performed or not during the RJMCMC runs. Default value
is true.

10 Chapter 3. Public API

AutoMix, Release 2.1

doPerm
A bool value indicating if Permutation is to be performed or not during the RJMCMC runs. Default value
is false.

student_T_dof
int type. The degree of freedom of the Student’s T distribution to sample from. If 0, sample from a Normal
distribution instead. Default value is 0.

am_mixfit
A automix_mix_fit value. Default is FIGUEREIDO_MIX_FIT.

seed
An unsigned long value to initialize the random number generator. Defaults to clock time.

condProbStats

rwm_summary_len
TBD.

sig_k_rwm_summary
TBD.

nacc_ntry_rwm
TBD.

nfitmix
TBD.

fitmix_annulations
TBD.

fitmix_costfnnew
TBD.

fitmix_lpn
TBD.

fitmix_Lkk
TBD.

proposalDist
The proposal distribution is of the form:

𝑝(𝜃) =

𝑘𝑚𝑎𝑥∑︁
𝑘=1

𝐿𝑘 exp

(︂
−1

2
(𝜃𝑘 − 𝜇𝑘)𝐵 ·𝐵𝑇 (𝜃𝑘 − 𝜇𝑘)

)︂
.

nmodels
The number of models in M (referred as 𝐾𝑚𝑎𝑥 in thesis, p 143)

nMixComps
The numberof mixture components for each model (refferred as 𝐿𝑘 in thesis, p144)

model_dims
The dimension of the 𝜃 parameter space for each model.

lambda
The relative weights for each mixture component for each model. lambda[i][j] is the weight of the j-th
mixture component for model 𝑀𝑖.

3.2. C struct’s 11

AutoMix, Release 2.1

mu
The mean vector for the mixture component for each model. mu[i][j][k] is the k-th vector index for the
j-th mixture component for model 𝑀𝑖.

B
𝐵 ·𝐵𝑇 is the covariance matrix for each mixture component for each model. B[i][j][k][m] is the k,m index
of the B matrix for mixture component j of model 𝑀𝑖.

sig
Vector of adapted RWM scale parameters for each model.

chainState
Struct to hold the MCMC chain state

theta
The current value of 𝜃𝑘 in the chain.

pk
TBD.

log_posterior
The current value of the log-posterior.

current_model_k
The current model index k in the chain.

mdim
The dimension of the current model in the chain.

current_Lkk
TBD

nreinit
TBD.

reinit
TBD.

pkllim
TBD.

doBlockRWM
A bool value to indicate if the chain should do a Block-RWM. This is done every 10 sweeps.

isBurning
A bool that indicates wether the chain is burning samples.

sweep_i
The index of the chain.

3.3 Typedef’s and Enum’s

targetDist
The prototype of the log-posterior function that must be passed to amSampler upon initialization.

typedef double (*targetDist)(int model_k, double *x);

bool
A typedef for int. C does not have a bool type but int is just as good. true and false are also defined for
compatibility with C++.

12 Chapter 3. Public API

AutoMix, Release 2.1

typedef int bool;
#define true 1
#define false 0

automix_mix_fit
Enum to specify whether using Figuereido or AutoRJ in conditional probabilities estimation.

typedef enum { FIGUEREIDO_MIX_FIT = 0, AUTORJ_MIX_FIT } automix_mix_fit;

3.3. Typedef’s and Enum’s 13

AutoMix, Release 2.1

14 Chapter 3. Public API

CHAPTER 4

License

The AutoMix sampler is free for personal and academic use, but users must reference the sampler as instructed below.
For commercial use permission must be sought from the author. To seek permission for such use please send an e-mail
to d_hastie@hotmail.com outlining the desired usage.

Use of the AutoMix sampler is entirely at the user’s own risk. It is the responsibility of the user to ensure that any
conclusions made through the use of the AutoMix sampler are valid. The author accepts no responsibility whatsoever
for any loss, financial or otherwise, that may arise in connection with the use of the sampler.

The AutoMix sampler is available from http://www.davidhastie.me.uk/AutoMix. The sampler may be modified and
redistributed as desired but the author encourages users to register at the above site so that notice can be received of
updates of the software.

Before use, please read this README file bundled with this software.

The AutoMix package is a C program for Unix-like systems, implementing the automatic Reversible Jump MCMC
sampler of the same name described in Chapters 4, 5, and 6 of David Hastie’s Ph.D. thesis (included in docs/
thesis).

While the original AutoMix is highly useful, the fact that it can only be used as an executable can limit its applicability.
LibAutoMix makes the core algorithms of Source Extractor available as a library of stand-alone functions and
data structures. The code is completely derived from the original AutoMix code base and aims to produce results
compatible with it whenever possible. LibAutoMix is a C library with no dependencies outside the standard library.

15

mailto:d_hastie@hotmail.com
http://www.davidhastie.me.uk/AutoMix

AutoMix, Release 2.1

16 Chapter 4. License

CHAPTER 5

What is Reversible Jump MCMC?

Reversible Jump Markov Chain Monte Carlo (RJMCMC) extends the standard MCMC sampler to include a discrete
random variable k that represents the index of a model. So, instead of sampling from the usual parameter space of a
given distribution, RJMCMC will also sample across different models (distributions).

The final samples of a RJMCMC reflect the probabilities of the parameters of each model, but also the relative proba-
bilities of the models themselves.

17

AutoMix, Release 2.1

18 Chapter 5. What is Reversible Jump MCMC?

CHAPTER 6

Main advantages of AutoMix:

• Reversible Jump MCMC allows sampling from several distributions (models) simultaneously.

• The different models may have different number of free parameters (dimension).

• The relative frequency of sampling for different models is proportional to the probability of the model. That
means that AutoMix can be used as a model selection sampler.

• AutoMix requires minimum input from the user.

• AutoMix automatically adapts proposal distributions with a multi-modal Normal mixture.

Caution: Potential users should carefully understand the limitations of using the AutoMix sampler. The reliability
of results from this sampler depends on many factors, including the scaling of the parameters and the degree of
multimodality of the within-model conditionals of the target distribution.

19

AutoMix, Release 2.1

20 Chapter 6. Main advantages of AutoMix:

CHAPTER 7

Where to go from here?

For a quick tour of the library, check out the Tutorial.

To compile your program against the AutoMix library see Compilation.

For a description of the full public API with statistics information, see Public API.

21

AutoMix, Release 2.1

22 Chapter 7. Where to go from here?

Index

A
amSampler (C type), 10
amSampler.am_mixfit (C member), 11
amSampler.ch (C member), 10
amSampler.cpstats (C member), 10
amSampler.doAdapt (C member), 10
amSampler.doPerm (C member), 10
amSampler.jd (C member), 10
amSampler.seed (C member), 11
amSampler.st (C member), 10
amSampler.student_T_dof (C member), 11
automix_mix_fit (C type), 13

B
bool (C type), 12

C
chainState (C type), 12
chainState.current_Lkk (C member), 12
chainState.current_model_k (C member), 12
chainState.doBlockRWM (C member), 12
chainState.isBurning (C member), 12
chainState.log_posterior (C member), 12
chainState.mdim (C member), 12
chainState.nreinit (C member), 12
chainState.pk (C member), 12
chainState.pkllim (C member), 12
chainState.reinit (C member), 12
chainState.sweep_i (C member), 12
chainState.theta (C member), 12
condProbStats (C type), 11
condProbStats.fitmix_annulations (C mem-

ber), 11
condProbStats.fitmix_costfnnew (C mem-

ber), 11
condProbStats.fitmix_Lkk (C member), 11
condProbStats.fitmix_lpn (C member), 11
condProbStats.nacc_ntry_rwm (C member), 11
condProbStats.nfitmix (C member), 11

condProbStats.rwm_summary_len (C member),
11

condProbStats.sig_k_rwm_summary (C mem-
ber), 11

P
proposalDist (C type), 11
proposalDist.B (C member), 12
proposalDist.lambda (C member), 11
proposalDist.model_dims (C member), 11
proposalDist.mu (C member), 11
proposalDist.nMixComps (C member), 11
proposalDist.nmodels (C member), 11
proposalDist.sig (C member), 12

R
runStats (C type), 10
runStats.ksummary (C member), 10
runStats.naccrwmb (C member), 10
runStats.naccrwms (C member), 10
runStats.nacctd (C member), 10
runStats.ntryrwmb (C member), 10
runStats.ntryrwms (C member), 10
runStats.ntrytd (C member), 10
runStats.theta_summary (C member), 10
runStats.theta_summary_len (C member), 10

T
targetDist (C type), 12

23

	Tutorial
	Example
	AutoMix Sampler
	Run Statistics

	Compilation
	Library Compilation
	Compiling your program against libautomix
	Compiling test and tutorial
	Compiling “user*” legacy programs
	Clean

	Public API
	Functions:
	C struct’s
	Typedef’s and Enum’s

	License
	What is Reversible Jump MCMC?
	Main advantages of AutoMix:
	Where to go from here?
	Index

